Frigate birds fly nonstop for months
Even Amelia Earhart couldn’t compete with the great frigate bird. She flew nonstop across the United States for 19 hours in 1932; the frigate bird can stay aloft up to two months without landing, a new study finds. The seabird saves energy on transoceanic treks by capitalizing on the large-scale movement patterns of the atmosphere, researchers report in the July 1 Science. By hitching a ride on favorable winds, the bird can spend more time soaring and less time flapping its wings.
“Frigate birds are really an anomaly,” says Scott Shaffer, an ecologist at San Jose State University in California who wasn’t involved in the study. The large seabird spends much of its life over the open ocean. Both juvenile and adult birds undertake nonstop flights lasting weeks or months, the scientists found. Frigate birds can’t land in the water to catch a meal or take a break because their feathers aren’t waterproof, so scientists weren’t sure how the birds made such extreme journeys.
Researchers attached tiny accelerometers, GPS trackers and heart rate monitors to great frigate birds flying from a tiny island near Madagascar. By pooling data collected over several years, the team re-created what the birds were doing minute-by-minute over long flights — everything from how often the birds flapped their wings to when they dived for food.
The birds fly more than 400 kilometers, about equivalent to the distance from Boston to Philadelphia, every day. They don’t even stop to refuel, instead scooping up fish while still in flight.
And when frigate birds do take a break, it’s a quick stopover.
“When they land on a small island, you’d expect they’d stay there for several days. But in fact, they just stay there for a couple hours,” says Henri Weimerskirch, a biologist at the French National Center for Scientific Research in Villiers-en-Bois who led the study. “Even the young birds stay in flight almost continually for more than a year.”
Frigate birds need to be energy Scrooges to fly that far. To minimize wing-flapping time, they seek out routes upward-moving air currents that help them glide and soar over the water. For instance, the birds skirt the edge of the doldrums, a windless region near the equator. On either side of the region, consistent winds make for favorable flying conditions. Frigate birds ride a thermal roller coaster underneath the bank of fluffy cumulus clouds frequently found there, soaring up to altitudes of 600 meters.
Airplanes tend to avoid flying through cumulus clouds because they cause turbulence. So the researchers were surprised to find that frigate birds sometimes use the rising air inside the clouds to get an extra elevation boost — up to nearly 4,000 meters. The extra height means the birds have more time to gradually glide downward before finding a new updraft. That’s an advantage if the clouds (and the helpful air movement patterns they create) are scarce.
It’s not yet clear how frigate birds manage to sleep while on the wing. Weimerskirch suggests they might nap in several-minute bursts while ascending on thermals.
“To me, the most fascinating thing was how incredibly far these frigate birds go in a single flight, and how closely tied those flight patterns are to the long-term average atmospheric condition,” says Curtis Deutsch, an oceanographer at the University of Washington in Seattle. As these atmospheric patterns shift with climate change, frigate birds might change their path, too.