Getting rid of snails is effective at stopping snail fever

To stop snail fever, control the snails.

That’s the takeaway of a new study of snail fever, or schistosomiasis, a tropical disease that affects more than 250 million people worldwide. It’s caused by a water-borne parasite that reproduces inside some snails. Parasite larvae burrow through people’s skin and can cause infertility, cognitive problems and even cancer. Today, most countries manage the disease with a drug that kills the parasite in human hosts. Some nations also control snail populations to hamstring the parasite’s life cycle, but that’s a less popular approach.

But snail control turns out to be more effective than drugs for curbing snail fever, researchers report July 21 in PLOS Neglected Tropical Diseases. The scientists compared a range of disease management strategies in 83 countries in the last century that included killing snails, using drugs or changing infrastructure (such as sanitation services). Projects using snail control cut disease by over 90 percent; those without it, by less than 40 percent.

The researchers suggest a blend of drug therapy and snail management to eradicate disease in the future.

Sleep deprivation hits some brain areas hard

Pulling consecutive all-nighters makes some brain areas groggier than others. Regions involved with problem solving and concentration become especially sluggish when sleep-deprived, a new study using brain scans reveals. Other areas keep ticking along, appearing to be less affected by a mounting sleep debt.

The results might lead to a better understanding of the rhythmic nature of symptoms in certain psychiatric or neurodegenerative disorders, says study coauthor Derk-Jan Dijk. People with dementia, for instance, can be afflicted with “sundowning,” which worsens their symptoms at the end of the day. More broadly, the findings, published August 12 in Science, document the brain’s response to too little shut-eye.
“We’ve shown what shift workers already know,” says Dijk, of the University of Surrey in England. “Being awake at 6 a.m. after a night of no sleep, it isn’t easy. But what wasn’t known was the remarkably different response of these brain areas.”

The research reveals the differing effects of the two major factors that influence when you conk out: the body’s roughly 24-hour circadian clock, which helps keep you awake in the daytime and put you to sleep when it’s dark, and the body’s drive to sleep, which steadily increases the longer you’re awake.

Dijk and collaborators at the University of Liege in Belgium assessed the cognitive function of 33 young adults who went without sleep for 42 hours. Over the course of this sleepless period, the participants performed some simple tasks testing reaction time and memory. The sleepy subjects also underwent 12 brain scans during their ordeal and another scan after 12 hours of recovery sleep. Throughout the study, the researchers also measured participants’ levels of the sleep hormone melatonin, which served as a way to track the hands on their master circadian clocks.

Activity in some brain areas, such as the thalamus, a central hub that connects many other structures, waxed and waned in sync with the circadian clock. But in other areas, especially those in the brain’s outer layer, the effects of this master clock were overridden by the body’s drive to sleep. Brain activity diminished in these regions as sleep debt mounted, the scans showed.

Sleep deprivation also meddled with the participants’ performance on simple tasks, effects influenced both by the mounting sleep debt and the cycles of the master clock. Performance suffered in the night, but improved somewhat during the second day, even after no sleep.
While the brain’s circadian clock signal is known to originate in a cluster of nerve cells known as the suprachiasmatic nucleus, it isn’t clear where the drive to sleep comes from, says Charles Czeisler, a sleep expert at Harvard Medical School. The need to sleep might grow as toxic metabolites build up after a day’s worth of brain activity, or be triggered when certain regions run out of fuel.

Sleep drive’s origin is just one of many questions raised by the research, says Czeisler, who says the study “opens up a new era in our understanding of sleep-wake neurobiology.” The approach of tracking activity with brain scans and melatonin measurements might reveal, for example, how a lack of sleep during the teenage years influences brain development.

Such an approach also might lead to the development of a test that reflects the strength of the body’s sleep drive, Czeisler says. That measurement might help clinicians spot chronic sleep deprivation, a health threat that can masquerade as attention-deficit/hyperactivity disorder in children.

Flaming fuel on water creates ‘blue whirl’ that burns clean

Blue whirl
Bloo werl n.
A swirling flame that appears in fuel floating on the surface of water and glows blue.

An unfortunate mix of electricity and bourbon has led to a new discovery. After lightning hit a Jim Beam warehouse in 2003, a nearby lake was set ablaze when the distilled spirit spilled into the water and ignited. Spiraling tornadoes of fire leapt from the surface. In a laboratory experiment inspired by the conflagration, a team of researchers produced a new, efficiently burning fire tornado, which they named a blue whirl.
To re-create the bourbon-fire conditions, the researchers, led by Elaine Oran of the University of Maryland in College Park, ignited liquid fuel floating on a bath of water. They surrounded the blaze with a cylindrical structure that funneled air into the flame to create a vortex with a height of about 60 centimeters. Eventually, the chaotic fire whirl calmed into a blue, cone-shaped flame just a few centimeters tall, the scientists report online August 4 in Proceedings of the National Academy of Sciences.

“Firenadoes” are known to appear in wildfires, when swirling winds and flames combine to form a hellacious, rotating inferno. They burn more efficiently than typical fires, as the whipping winds mix in extra oxygen, which feeds the fire. But the blue whirl is even more efficient; its azure glow indicates complete combustion, which releases little soot, or uncombusted carbon, to the air.

The soot-free blue whirls could be a way of burning off oil spills on water without adding much pollution to the air, the researchers say, if they can find a way to control them in the wild.

Dog brains divide language tasks much like humans do

Editor’s note: When reporting results from the functional MRI scans of dogs’ brains, left and right were accidentally reversed in all images, the researchers report in a correction posted April 7 in Science. While dogs and most humans use different hemispheres of the brain to process meaning and intonation — instead of the same hemispheres, as was suggested — lead author Attila Andics says the more important finding still stands: Dogs’ brains process different aspects of human speech in different hemispheres.
Dogs process speech much like people do, a new study finds. Meaningful words like “good boy” activate the left side of a dog’s brain regardless of tone of voice, while a region on the right side of the brain responds to intonation, scientists report in the Sept. 2 Science.

Similarly, humans process the meanings of words in the left hemisphere of the brain, and interpret intonation in the right hemisphere. That lets people sort out words that convey meaning from random sounds that don’t. But it has been unclear whether language abilities were a prerequisite for that division of brain labor, says neuroscientist Attila Andics of Eötvös Loránd University in Budapest.

Dogs make ideal test subjects for understanding speech processing because of their close connection to humans. “Humans use words towards dogs in their everyday, normal communication, and dogs pay attention to this speech in a way that cats and hamsters don’t,” says Andics. “When we want to understand how an animal processes speech, it’s important that speech be relevant.”
Andics and his colleagues trained dogs to lie still for functional MRI scans, which reveal when and where the brain is responding to certain cues. Then the scientists played the dogs recordings of a trainer saying either meaningful praise words like “good boy,” or neutral words like “however,” either in an enthusiastic tone of voice or a neutral one.
The dogs showed increased activity in the left sides of their brains in response to the meaningful words, but not the neutral ones. An area on the right side of the brain reacted to the intonation of those words, separating out enthusiasm from indifference.

When the dogs heard praising words in an enthusiastic tone of voice, neural circuits associated with reward became more active. The dogs had the same neurological response to an excited “Good dog!” as they might to being petted or receiving a tasty treat. Praise words or enthusiastic intonation alone didn’t have the same effect.

Humans stand out from other animals in their ability to use language — that is, to manipulate sequences of sounds to convey different meanings. But the new findings suggest that the ability to hear these arbitrary sequences of sound and link them to meaning isn’t a uniquely human ability.

“I love these results, as they point to how well domestication has shaped dogs to use and track the very same cues that we use to make sense of what other people are saying,” says Laurie Santos, a cognitive psychologist at Yale University.

While domestication made dogs more attentive to human speech, humans have been close companions with dogs for only 30,000 years. That’s too quickly for a trait like lateralized speech processing to evolve, Andics thinks. He suspects that some older underlying neural mechanism for processing meaningful sounds is present in other animals, too.

It’s just hard to test in other species, he says — in part because cats don’t take as kindly to being put inside MRI scanners and asked to hold still.

Supersymmetry’s absence at LHC puzzles physicists

A beautiful but unproved theory of particle physics is withering in the harsh light of data.

For decades, many particle physicists have devoted themselves to the beloved theory, known as supersymmetry. But it’s beginning to seem that the zoo of new particles that the theory predicts —the heavier cousins of known particles — may live only in physicists’ imaginations. Or if such particles, known as superpartners, do exist, they’re not what physicists expected.

New data from the world’s most powerful particle accelerator — the Large Hadron Collider, now operating at higher energies than ever before — show no traces of superpartners. And so the theory’s most fervent supporters have begun to pay for their overconfidence — in the form of expensive bottles of brandy. On August 22, a group of physicists who wagered that the LHC would quickly confirm the theory settled a 16-year-old bet. In a session at a physics meeting in Copenhagen, theoretical physicist Nima Arkani-Hamed ponied up, presenting a bottle of cognac to physicists who bet that the new particles would be slow to materialize, or might not exist at all.
Whether their pet theories are right or wrong, many theoretical physicists are simply excited that the new LHC data can finally anchor their ideas to reality. “Of course, in the end, nature is going to tell us what’s true,” says theoretical physicist Yonit Hochberg of Cornell University, who spoke on a panel at the meeting.

Supersymmetry is not ruled out by the new data, but if the new particles exist, they must be heavier than scientists expected. “Right now, nature is telling us that if supersymmetry is the right theory, then it doesn’t look exactly like we thought it would,” Hochberg says.
Since June 2015, the LHC, at the European particle physics lab CERN near Geneva, has been smashing protons together at higher energies than ever before: 13 trillion electron volts. Physicists had been eager to see if new particles would pop out at these energies. But the results have agreed overwhelmingly with the standard model, the established theory that describes the known particles and their interactions.

It’s a triumph for the standard model, but a letdown for physicists who hope to expose cracks in that theory. “There is a low-level panic,” says theoretical physicist Matthew Buckley of Rutgers University in Piscataway, N.J. “We had a long time without data, and during that time many theorists thought up very compelling ideas. And those ideas have turned out to be wrong.”

Physicists know that the standard model must break down somewhere. It doesn’t explain why the universe contains more matter than antimatter, and it fails to pinpoint the origins of dark matter and dark energy, which make up 95 percent of the matter and energy in the cosmos.

Even the crowning achievement of the LHC, the discovery of the Higgs boson in 2012 (SN: 7/28/2012, p. 5), hints at the sickness within the standard model. The mass of the Higgs boson, at 125 billion electron volts, is vastly smaller than theory naïvely predicts. That mass, physicists worry, is not “natural” — the factors that contribute to the Higgs mass must be finely tuned to cancel each other out and keep the mass small (SN Online: 10/22/13).

Among the many theories that attempt to fix the standard model’s woes, supersymmetry is the most celebrated. “Supersymmetry was this dominant paradigm for 30 years because it was so beautiful, and it was so perfect,” says theoretical physicist Nathaniel Craig of the University of California, Santa Barbara. But supersymmetry is becoming less appealing as the LHC collects more collisions with no signs of superpartners.

Supersymmetry solves three major problems in physics: It explains why the Higgs is so light; it provides a particle that serves as dark matter; and it implies that the three forces of the standard model (electromagnetism and the weak and strong nuclear forces) unite into one at high energies.

If a simple version of supersymmetry is correct, the LHC probably should have detected superpartners already. As the LHC rules out such particles at ever-higher masses, retaining the appealing properties of supersymmetry requires increasingly convoluted theoretical contortions, stripping the idea of some of the elegance that first persuaded scientists to embrace it.
“If supersymmetry exists, it is not my parents’ supersymmetry,” says Buckley. “That kind of means it can’t be the most compelling version.”

Still, many physicists are adopting an attitude of “keep calm and carry on.” They aren’t giving up hope that evidence for the theory — or other new particle physics phenomena — will show up soon. “I am not yet particularly worried,” says theoretical physicist Carlos Wagner of the University of Chicago. “I think it’s too early. We just started this process.” The LHC has delivered only 1 percent of the data it will collect over its lifetime. Hopes of quickly finding new phenomena were too optimistic, Wagner says.
Experimental physicists, too, maintain that there is plenty of room for new discoveries. But it could take years to uncover them. “I would be very, very happy if we were able to find some new phenomena, some new state of matter, within the first two or three years” of running the LHC at its boosted energy, Tiziano Camporesi of the LHC’s CMS experiment said during a news conference at the International Conference on High Energy Physics, held in Chicago in August. “That would mean that nature has been kind to us.”

But other LHC scientists admit they had expected new discoveries by now. “The fact that we haven’t seen something, I think, is in general quite surprising to the community,” said Guy Wilkinson, spokesperson for the LHCb experiment. “This isn’t a failure — this is perhaps telling us something.” The lack of new particles forces theoretical physicists to consider new explanations for the mass of the Higgs. To be consistent with data, those explanations can’t create new particles the LHC should already have seen.

Some physicists — particularly those of the younger generations — are ready to move on to new ideas. “I’m personally not attached to supersymmetry,” says David Kaplan of Johns Hopkins University. Kaplan and colleagues recently proposed the “relaxion” hypothesis, which allows the Higgs mass to change — or relax — as the universe evolves. Under this theory, the Higgs mass gets stuck at a small value, never reaching the high mass otherwise predicted.

Another idea, which Craig favors, is a family of theories by the name of “neutral naturalness.” Like supersymmetry, this idea proposes symmetries of nature that solve the problem of the Higgs mass, but it doesn’t predict new particles that should have been seen at the LHC. “The theories, they’re not as beautiful as just simple supersymmetry, but they’re motivated by data,” Craig says.

One particularly controversial idea is the multiverse hypothesis. There may be innumerable other universes, with different Higgs masses in each. Perhaps humans observe such a light Higgs because a small mass is necessary for heavy elements like carbon to be produced in stars. People might live in a universe with a small Higgs because it’s the only type of universe life can exist in.

It’s possible that physicists’ fears will be realized — the LHC could deliver the Higgs boson and nothing else. Such a result would leave theoretical physicists with few clues to work with. Still, says Hochberg, “if that’s the case, we’ll still be learning something very deep about nature.”

Science relies on work of young research standouts

This issue marks the second year that Science News has reached out to science notables and asked: Which up-and-coming scientist is making a splash? Whose work impresses you? Tell us about early- to mid-career scientists who have the potential to change their fields and the direction of science more generally.

This year, we expanded the pool of people we asked. We reached out to Nobel laureates again and added recently elected members of the National Academy of Sciences. That allowed us to consider shining lights from a much broader array of fields, from oceanography and astronomy to cognitive psychology. Another difference this year: We spent time face-to-face with many of those selected, to get a better sense of them both as scientists and as people.
The result is the SN 10, a collection of stories not only about science, but also about making a life in science. They are stories of people succeeding because they have found what they love, be it working in the lab on new ways to probe molecular structures or staring up to the stars in search of glimmers of the early universe. In my interviews with chemist Phil Baran, I was struck by his drive to do things in new ways, whether devising chemical reactions or developing ideas about how to fund research. (If you can, he says, go private.) Laura Sanders, who met with neuroscientist Jeremy Freeman, was intrigued by his way of seeing a problem (siloed data that can’t be easily shared or analyzed) and figuring out solutions, even if those solutions were outside his area of expertise.

Of course, there are many ways to identify noteworthy scientists — and there’s plenty more fodder out there for future years. Our approach was to seek standouts, asking who deserved recognition for the skill of their methods, the insights of their thinking, the impacts of their research. Not all of the SN 10’s work has made headlines, but they all share something more important: They are participants in building the science of the future.

Notably, many of them do basic research. I think that’s because it’s the type of work that other scientists notice, even if it’s not always on the radar of the general public. But that’s where fundamental advances are often made, as scientists explore the unknown.

That edge of what’s known is where Science News likes to explore, too. Such as the bet-ending, head-scratching results from the Large Hadron Collider, which have failed to reveal the particles that the equations of supersymmetry predict. As Emily Conover reports in “Supersymmetry’s absence at LHC puzzles physicists,” that means that either the theory must be more complicated than originally thought, or not true, letting down those who looked to supersymmetry to help explain a few enduring mysteries, from the nature of dark matter to the mass of the Higgs boson.

Other mysteries may be closer to a solution, as Sanders reports in “New Alzheimer’s drug shows promise in small trial.” A new potential treatment for Alzheimer’s disease reduced amyloid-beta plaques in patients. It also showed hints of improving cognition. That’s standout news, a result built on decades of basic research by many, many bright young scientists.

Wi-Fi can help house distinguish between members

In smart homes of the future, computers may identify inhabitants and cater to their needs using a tool already at hand: Wi-Fi. Human bodies partially block the radio waves that carry the wireless signal between router and computer. Differences in shape, size and even gait among household members yield different patterns in the received Wi-Fi signals. A computer can analyze the signals to distinguish dad from mom, according to a report posted online August 11 at arXiv.org.

Scientists built an algorithm that was nearly 95 percent accurate when attempting to discern two adults walking between a wireless router and a computer. For six people, accuracy fell to about 89 percent. Scientists tested the setup on men and women of various sizes, but it should work with children as well, says study coauthor Bin Guo of Northwestern Polytechnical University in Xi’an, China.

In a home rigged with Wi-Fi and a receiver, the system could eventually identify family members and tailor heating and lighting to their preferences — maybe even cue up a favorite playlist.

Rarest nucleus reluctant to decay

Nature’s rarest type of atomic nucleus is not giving up its secrets easily.

Scientists looking for the decay of an unusual form of the element tantalum, known as tantalum-180m, have come up empty-handed. Tantalum-180m’s hesitance to decay indicates that it has a half-life of at least 45 million billion years, Bjoern Lehnert and colleagues report online September 13 at arXiv.org. “The half-life is longer than a million times the age of the universe,” says Lehnert, a nuclear physicist at Carleton University in Ottawa. (Scientists estimate the universe’s age at 13.8 billion years.)
Making up less than two ten-thousandths of a percent of the mass of the Earth’s crust, the metal tantalum is uncommon. And tantalum-180m is even harder to find. Only 0.01 percent of tantalum is found in this state, making it the rarest known long-lived nuclide, or variety of atom.

Tantalum-180m is a bit of an oddball. It is what’s known as an isomer — its nucleus exists in an “excited,” or high-energy, configuration. Normally, an excited nucleus would quickly drop to a lower energy state, emitting a photon — a particle of light — in the process. But tantalum-180m is “metastable” (hence the “m” in its name), meaning that it gets stuck in its high-energy state.
Tantalum-180m is thought to decay by emitting or capturing an electron, morphing into another element — either tungsten or hafnium — in the process. But this decay has never been observed. Other unusual nuclides, such as those that decay by emitting two electrons simultaneously, can have even longer half-lives than tantalum-180m. But tantalum-180m is unique — it is the longest-lived isomer found in nature.
“It’s a very interesting nucleus,” says nuclear physicist Eric Norman of the University of California, Berkeley, who was not involved with the study. Scientists don’t have a good understanding of such unusual decays, and a measurement of the half-life would help scientists pin down the details of the process and the nucleus’ structure.
Lehnert and colleagues observed a sample of tantalum with a detector designed to catch photons emitted in the decay process. After running the experiment for 176 days, and adding in data from previous incarnations of the experiment, the team saw no evidence of decay. The half-life couldn’t be shorter than 45 million billion years, the scientists determined, or they would have seen some hint of the process. “They did a state-of-the-art measurement,” says Norman. “It’s a very difficult thing to see.”

The presence of tantalum-180m in nature is itself a bit of a mystery, too. The element-forging processes that occur in stars and supernovas seem to bypass the nuclide. “People don’t really understand how it is created at all,” says Lehnert.

Tantalum-180m is interesting as a potential energy source, says Norman, although “it’s kind of a crazy idea.” If scientists could find a way to tap the energy stored in the excited nucleus by causing it to decay, it might be useful for applications like nuclear lasers, he says.

Cosmic census of galaxies updated to 2 trillion

Two trillion galaxies. That’s the latest estimate for the number of galaxies that live — or have lived — in the observable universe, researchers report online October 10 at arXiv.org. This updated headcount is roughly 10 times greater than previous estimates and suggests that there are a lot more galaxies out there for future telescopes to explore.

Hordes of relatively tiny galaxies, weighing as little as 1 million suns, are responsible for most of this tweak to the cosmic census. Astronomers haven’t directly seen these galaxies yet. Christopher Conselice, an astrophysicist at the University of Nottingham in England, and colleagues combined data from many ground- and space-based telescopes to look at how the number of galaxies in a typical volume of the universe has changed over much of cosmic history. They then calculated how many galaxies have come and gone in the universe.

The galactic population has dwindled over time, as most of those 2 trillion galaxies collided and merged to build larger galaxies such as the Milky Way, the researchers suggest. That’s in line with prevailing ideas about how massive galaxies have been assembled. Seeing many of these remote runts, however, is beyond the ability of even the next generation of telescopes. “We will have to wait at least several decades before even the majority of galaxies have basic imaging,” the researchers write.

Virus triggers immune proteins to aid enemy

Crucial immune system proteins that make it harder for viruses to replicate might also help the attackers avoid detection, three new studies suggest. When faced with certain viruses, the proteins can set off a cascade of cell-to-cell messages that destroy antibody-producing immune cells. With those virus-fighting cells depleted, it’s easier for the invader to persist inside the host’s body.

The finding begins to explain a longstanding conundrum: how certain chronic viral infections can dodge the immune system’s antibody response, says David Brooks, an immunologist at the University of Toronto not involved in the research. The new studies, all published October 21 in Science Immunology, pin the blame on the same set of proteins: type 1 interferons.
Normally, type 1 interferons protect the body from viral siege. They snap into action when a virus infects cells, helping to activate other parts of the immune system. And they make cells less hospitable to viruses so that the foreign invaders can’t replicate as easily.

But in three separate studies, scientists tracked mice’s immune response when infected with lymphocytic choriomeningitis virus, or LCMV. In each case, type 1 interferon proteins masterminded the loss of B cells, which produce antibodies specific to the virus that is being fought. Normally, those antibodies latch on to the target virus, flagging it for destruction by other immune cells called T cells. With fewer B cells, the virus can evade capture for longer.

The proteins’ response “is driving the immune system to do something bad to itself,” says Dorian McGavern, an immunologist at the National Institute of Neurological Disorders and Stroke in Bethesda, Md., who led one of the studies.

The interferon proteins didn’t directly destroy the B cells; they worked through middlemen instead. These intermediaries differed depending on factors including the site of infection and how much of the virus the mice received.
T cells were one intermediary. McGavern and his colleagues filmed T cells actively destroying their B cell compatriots under the direction of the interferon proteins. When the scientists deleted those T cells, the B cells didn’t die off even though the interferons were still hanging around.
Another study found that the interferons were sending messages not just through T cells, but via a cadre of other immune cells, too. Those messages told B cells to morph into cells that rapidly produce antibodies for the virus. But those cells die off within a few days instead of mounting a longer-term defense.

That strategy could be helpful for a short-term infection, but less successful against a chronic one, says Daniel Pinschewer, a virologist at the University of Basel in Switzerland who led that study. Throwing the entire defense arsenal at the virus all at once leaves the immune system shorthanded later on.

But interferon activity could prolong even short-term viral infections, a third study showed. There, scientists injected lower doses of LCMV into mice’s footpads and used high-powered microscopes to watch the infection play out in the lymph nodes. In this case, the interferon stifled B cells by working through inflammatory monocytes, white blood cells that rush to infection sites.

“The net effect is beneficial for the virus,” says Matteo Iannacone, an immunologist at San Raffaele Scientific Institute in Milan who led the third study. Sticking around even a few days longer gives the virus more time to spread to new hosts.

Since all three studies looked at the same virus, it’s not yet clear whether the mechanism extends to other viral infections. That’s a target for future research, Iannacone says. But Brooks thinks it’s likely that other viruses that dampen antibody response (like HIV and hepatitis C) could also be exploiting type 1 interferons.