Houseflies stretch their legs to land. Bumblebees hover, then slowly descend. Now, insect-sized flying robots have a way to stick the landing, too.
A tiny aerial bot about the size of a bee (nicknamed RoboBee) uses static electricity to cling to the underside of a leaf and perch on other materials, study coauthor Robert Wood of Harvard University and colleagues report in the May 20 Science.
RoboBee, a bot with shiny, flapping wings and four pinlike legs, is the first of its size that can fly, perch on a surface and then take off again. This energy-saving feat could one day extend mission time in search and rescue operations, the researchers say. For robots, tackling the problem of flight has been easier than figuring out how to land. “Engineers have been trying to build perching mechanisms for flying robots nearly as long as we have been creating flying robots,” Wood says. Researchers have had success with bigger, bird-sized bots (SN: 2/7/15, p. 18), but their landing mechanisms are tricky to scale down. For the microbot, Wood and colleagues wanted something simple: lightweight and without moving parts.
The team created an “electroadhesive” patch with electrodes that can be charged, letting the patch stick to different surfaces, like a balloon sticking to the wall after being rubbed on someone’s hair.
Switch the electrodes on and the patch, a circular disc on top of the robot, helps RoboBee hang out on overhanging pieces of glass or plywood, for example. Switch the electrodes off and the bot detaches, free to fly again. The sticky contraption lets RoboBee rest between flights: The bot used about a thousandth as much energy perching than hovering, the researchers found.
The cooling effect of pollution may have been exaggerated.
Fossil fuel burning spews sulfuric acid into the air, where it can form airborne particles that seed clouds and cool Earth’s climate. But that’s not the only way these airborne particles can form, three new studies suggest. Tree vapors can turn into cooling airborne particles, too.
The discovery means these particles were more abundant before the Industrial Revolution than previously thought. Climate scientists have therefore overestimated cooling caused by air pollution, says atmospheric chemist Urs Baltensperger, who coauthored the three studies. Simulating unpolluted air in a cloud chamber, Baltensperger and colleagues created microscopic particles from vapors released by trees. In the real world, cosmic rays whizzing into the atmosphere foster the development of these particles, the researchers propose in the May 26 Nature. Once formed, the particles can grow large enough to form the heart of cloud droplets, the researchers show in a second paper in Nature. After sniffing the air over the Swiss Alps, some of the same researchers report in the May 27 Science the discovery of the particles in the wild.
“These particles don’t just form in the laboratory, but also by Mother Nature,” says Baltensperger, of the Paul Scherrer Institute in Villigen, Switzerland.
Airborne particles, called aerosols, are microscopic bundles of molecules. Some aerosols start fully formed, such as dust and salts from sea spray, while others assemble from molecules in the atmosphere.
Since the 1970s, scientists have suspected that sulfuric acid is a mandatory ingredient for aerosols assembled in the air. Sulfuric acid molecules react with other molecules to form clusters that, if they grow large enough, can become stable. Human activities such as coal burning have boosted sulfuric acid concentrations in the atmosphere, subsequently boosting the abundance of aerosols that seed clouds and reflect sunlight like miniature disco balls. That aerosol boost partially offsets warming from greenhouse gases.
A cloud chamber at the CERN laboratory near Geneva allowed Baltensperger and his collaborators to simulate the atmosphere when sulfuric acid was scarce. The researchers added alpha-pinene, the organic vapor that gives pine trees their characteristic smell, to pristine air and watched for growing aerosols. Previous, though inconclusive, work suggested that the pine vapors might form aerosols. Alpha-pinene molecules reacted with ozone in the air and formed molecules that reacted and bundled together to form aerosols, the researchers observed. The researchers added an extra layer of realism by using one of CERN’s particle beams to mimic ions from the cosmic rays bombarding Earth’s atmosphere. The “rays” led to the formation of as many as 100 times the number of aerosols. The added ions help stabilize the growing aerosols, the researchers propose.
Further testing showed that the newborn aerosols can rapidly grow from around 2 nanometers wide — roughly the diameter of a DNA helix — to 80 nanometers across, large enough to seed cloud droplets.
At a research station high in the Swiss Alps, researchers observed aerosol formation during atmospheric conditions with low sulfuric acid concentrations and abundant molecules akin to alpha-pinene. The researchers couldn’t confirm the rapid growth seen in the lab, though.
Quantifying the overall climate influence of fossil fuel burning in light of the new discovery will be tricky, says Renyi Zhang, an atmospheric chemist at Texas A&M University in College Station. “Atmospheric processes are complex,” he says. “They had a pure setup, but in reality the atmosphere is loaded with chemicals. It’s hard to draw direct conclusions at this point.”
Painkillers in the opium family may actually make pain last longer. Morphine treatment after a nerve injury doubled the duration of pain in rats, scientists report the week of May 30 in the Proceedings of the National Academy of Sciences.
The results raise the troubling prospect that in addition to having unpleasant side effects and addictive potential, opioids such as OxyContin and Vicodin could actually extend some types of pain. If a similar effect is found in people, “it suggests that the treatment is actually contributing to the problem,” says study coauthor Peter Grace, a neuroscientist at the University of Colorado Boulder. Scientists have known that opioid-based drugs can cause heightened sensitivity to pain for some people, a condition called opioid-induced hyperalgesia. The new study shows that the effects linger weeks after use of the drugs is stopped. Male rats underwent surgery in which their sciatic nerves, which run down the hind legs, were squeezed with a stitch — a constriction that causes pain afterward. Ten days after surgery, rats received a five-day course of either morphine or saline.
Rats that didn’t receive morphine took about four weeks to start recovering, showing less sensitivity to a poke. Rats that got morphine took about eight weeks to show improvements — double the time. “That’s far bigger than we had anticipated,” Grace says. “We were definitely surprised by that.”
These experiments were done with male rats, but unpublished data indicate that morphine extends pain even longer in female rats, Grace says, results that fit with what’s known about differences in how males and females experience pain.
Longer-lasting pain in the rats came courtesy of an inflammatory response in the spinal cord. The immune system sees morphine as a threat, the researchers suspect, and responds by revving up inflammation through specialized cells called microglia. Experiments that shut down this process in microglia shortened the duration of the pain.
Many questions remain. Scientists don’t yet know if a similar immune reaction happens in people. Nor is it known whether all opioid-based painkillers would behave like morphine. Understanding the details of how the process works has important implications for doctors, many of whom may be unaware of opioids’ complex relationship with pain, says internal medicine physician Jonathan Chen of Stanford University School of Medicine. Clarity on how opioids influence pain could change doctors’ prescribing habits and encourage the search for better pain treatments, he says.
Grace points out that the experiments were done in genetically similar rats, and that people may have more varied responses to opioids. That variability might mean that not everyone would be at risk for such long-lasting pain, he says. “But clearly these data suggest that there may be a subset of people who might be in trouble.”
Radiation from the 23 nuclear tests conducted near Bikini Atoll in the 1940s and ’50s has lingered far longer than previously predicted.
Radioactive material such as cesium-137 currently produces, on average, 184 millirems of radiation per year on Bikini Atoll. And some parts of the island hit 639 millirems per year, researchers report online the week of June 6 in the Proceedings of the National Academy of Sciences. Those measurements, made last year, surpass the 100 millirems per year safety standard set by the United States and the Republic of the Marshall Islands, which controls the island.
Scientists had predicted that, by now, radiation levels would have dropped to 16 to 24 millirems per year. But those estimates came from extrapolating from measurements made in the 1970s. The mismatch probably stems from incorrect assumptions about how rapidly radioactive material washes off the island, proposes study coauthor Emlyn Hughes, a physicist at Columbia University.
Whether the higher radiation levels pose a serious health risk to caretakers who live on the island for part of the year depends on how long they stay on the island and whether the local fruit they eat is safe, Hughes says.