As a treatment for the ailments of aging, testosterone’s benefits are hit or miss.
For men with low testosterone, the hormone therapy is helpful for some health problems, but not so much for others, researchers report in five papers published February 21 in JAMA and JAMA Internal Medicine. Testosterone therapy was good for the bones, but didn’t help memory. It remedied anemia and was linked to a lower risk of heart attack and stroke. But treatment also upped the amount of plaque in the arteries, an early indicator of heart attack risk, researchers report. “It’s a very confusing area,” says Caleb Alexander, a prescription drug researcher at Johns Hopkins Bloomberg School of Public Health, who was not involved with the work. “Testosterone very well may help men feel more energized,” he says. “But the real question is: At what cost?”
As men age, their testosterone levels tend to drop. Researchers have suggested that boosting the levels back up to normal might counter some signs of aging, including memory loss and weakened bones. But the risks of such treatment — especially the cardiovascular risks — remain unclear, Alexander says. Dozens of studies have tackled the question, but the results “point in lots of different directions,” he says.
Despite lack of clarity on testosterone therapy’s safety and benefits, the number of men taking the hormone has soared in recent years. One 2014 analysis estimated that 2.2 million men filled testosterone prescriptions in 2013 compared with 1.2 million men in 2010. That includes many men with testosterone levels on the borderline between low and normal, men who don’t actually meet clinical guidelines for treatment, Alexander says. The new studies attempted to answer some of the long-standing questions about the pros and cons of treatment. Four present findings from a set of clinical trials known as the Testosterone Trials, designed to evaluate the effects of testosterone therapy in men age 65 or older. One study found that the density and strength of hip and especially spine bones improved after a year of using a daily dose of testosterone gel. Researchers don’t yet know whether these gains will translate to fewer fractures. Daily testosterone gel treatment over a year also helped men recover from anemia, raising levels of hemoglobin, an oxygen-carrying molecule in the blood, a second study showed. But testosterone gel didn’t seem to have an effect on men’s memory and cognition. In a study of 788 men, those who took the hormone performed about as well on memory and other tests as those who got a placebo.
Two studies attempted to untangle how exactly testosterone treatment affects the heart and blood vessels. One study, part of the Testosterone Trials, linked testosterone treatment with more plaque buildup in the vessels that carry oxygen-rich blood to the heart. That sounds ominous. Too much plaque can block blood flow and cripple the heart. But the second study didn’t find more heart attacks, strokes or other cardiovascular problems in men taking the hormone. In that study, researchers examined medical records of more than 44,000 men, around 8,800 of whom had been given a prescription for testosterone treatment. Over a roughly three-year follow-up period, these men actually had a lower risk of cardiovascular issues than men who hadn’t been given a testosterone prescription, researchers report.
The new work does “little overall to clarify the role of testosterone replacement” for cardiovascular risk and cognitive function, says Dimitri Cassimatis, a cardiologist at Emory University School of Medicine in Atlanta. But taken together, he says, the studies strengthen the evidence for testosterone’s benefits on bone density and anemia.
If your young child is facing ear tubes, an MRI or even extensive dental work, you’ve probably got a lot of concerns. One of them may be about whether the drugs used to render your child briefly unconscious can permanently harm his brain. Here’s the frustrating answer: No one knows.
“It’s a tough conundrum for parents of kids who need procedures,” says pediatric anesthesiologist Mary Ellen McCann, a pediatric anesthesiologist at Boston Children’s Hospital. “Everything has risks and benefits,” but in this case, the decision to go ahead with surgery is made more difficult by an incomplete understanding of anesthesia’s risks for babies and young children. Some studies suggest that single, short exposures to anesthesia aren’t dangerous. Still, scientists and doctors say that we desperately need more data before we really understand what anesthesia does to developing brains.
It helps to know this nonanswer comes with a lot of baggage, a sign that a lot of very smart and committed people are trying to answer the question. In December, the FDA issued a drug safety communication about anesthetics that sounded alarming, beginning with a warning that “repeated or lengthy use of general anesthetic and sedation drugs during surgeries or procedures in children younger than 3 years or in pregnant women during their third trimester may affect the development of children’s brains.” FDA recommended more conversations between parents and doctors, in the hopes of delaying surgeries that can safely wait, and the amount of anesthesia exposure in this potentially vulnerable population.
The trouble with that statement, though, is that it raises concerns without answering them, says pediatric anesthesiologist Dean Andropoulos of Texas Children’s Hospital in Houston. And that concern might lead to worse outcomes for their youngest patients. “Until reassuring new information from well-designed clinical trials is available, we are concerned that the FDA warning will cause delays for necessary surgical and diagnostic procedures that require anesthesia, resulting in adverse outcomes for patients,” Andropoulos and a colleague wrote February 8 in a New England Journal of Medicine perspective article.
By and large, the surgeries done in young children have good reasons. Surgery for serious heart disease and other life-threatening conditions can’t wait. Ear tubes need to be put in so that a child can hear and get auditory input that’s required early in life for normal language skills. Likewise, certain kinds of eye surgery and cleft palate repairs all lead to better developmental outcomes if done early.
That doesn’t leave many surgeries that can be put off. “The things that can be delayed are few and far between,” Andropoulos says. That’s why the FDA’s recent drug safety communication might cause extra parental worry about surgeries that ought to be done.
Scientists have lots of data showing that anesthetic drugs can cause long-lasting damage in a variety of species, from roundworms to rats to nonhuman primates. Anesthetics are “like any toxin,” says Andrew Davidson, an anesthesiologist at the Murdoch Childrens Research Center in Melbourne, Australia. “The more you have, the worse it is.” Yet Davidson and others have uncovered some reassuring news for parents. Quick, single exposures to anesthesia, about an hour or less, don’t seem dangerous.
Davidson, McCann and colleagues recently compared children who, as babies, had undergone hernia repair surgery. Of these babies, 359 had brief general anesthesia and 363 instead received local anesthesia. At age 2, the children showed no differences in mental abilities, the researchers reported last year in The Lancet. That trial, called the GAS study, was particularly well-done because unlike many other studies of this question, babies were randomly assigned to receive either general or local anesthesia. And the experiment isn’t over yet. Scientists will test the children again at age 5, when it will be easier to test more complex forms of thinking.
More encouraging news came from the PANDA study, which tracked over 100 children who had received a short dose of anesthesia (the median was 80 minutes) when they were younger than 3. When those same kids were 8 to 15 years old, their IQs and most other thinking skills were similar to their healthy siblings who had not received anesthesia when they were young.
Along with the GAS results, the PANDA study, published June 7 in the Journal of the American Medical Association, offers some reassurance to parents whose child might need surgery. “If it’s a short procedure, you don’t have to worry about it,” Davidson says.
For now, doctors are making good efforts to talk through these complex questions with parents as they make medical decisions. “We face this issue essentially every day,” Andropoulos says, and at his institute, the FDA guidelines prompted even more conversations. Parents are largely appreciative of having these talks, he says. And hopefully scientists will soon have something more to tell parents about what Andropoulos calls “the most important problem we face in pediatric anesthesia.”
To celebrate birthdays, my 2- and 4-year-old party animals got vaccinated. Measles, mumps, rubella, chicken pox, diphtheria, tetanus and whooping cough for the older one (thankfully combined into just two shots), and hepatitis A for the younger.
Funnily enough, there were no tears. Just before the shots, we were talking about the tiny bits of harmless germs that would now be inside their bodies, teaching their immune systems how to fight off the harmful germs and keep their bodies healthy. I suspect my girls got caught up in the excitement and forgot to be scared.
As I watched the vaccine needles go in, I was grateful for these medical marvels that clearly save lives. Yet the topic has become fraught for worried parents who want to keep their kids healthy. Celebrities, politicians and even some pediatricians argue that children today get too many vaccines too quickly, with potentially dangerous additives. Those fears have led to reductions in the number of kids who are vaccinated, and along with it, a resurgence of measles and other diseases that were previously kept in check.
Doctors and scientists try to reduce those fears with good, hard data that show vaccines are absolutely some of the safest and most important tools we have to keep children healthy. (Here’s a handy list of papers if you’d like to dig deeper.) A study published online March 10 in Pediatrics shows a particularly compelling piece of data on the impact of vaccines.
In 2000, doctors began using a vaccine called PCV7, which protected children against seven kinds of Streptococcus pneumoniae bacteria. PCV13 came along in 2010, adding six more types of bacteria to the protective roster. These bacteria can cause many different illnesses such as ear infections, meningitis and blood infections called bacteremia. In young children, these infections can sometimes be quite dangerous (and hard to diagnose). Medical records that span these pre- and post-vaccine time periods, kept by Kaiser Permanente Northern California, offered a chance to see these pneumococcal vaccinations in action. Before the vaccine existed, 74.5 of 100,000 kids ages 3 months to 36 months got pneumococcal bacteremia. After PCV13, that number had plummeted to 3.5 per 100,000. That’s a 95.3 percent reduction.
This plunge is striking, says study coauthor Tara Greenhow, a pediatric infectious disease specialist at Kaiser Permanente Northern California in San Francisco. Along with earlier results, the new study shows that pneumococcal vaccines are highly effective, she says.
As you check out the graph, pay attention to the data points you don’t see. Those are the babies and toddlers who didn’t end up sick, thanks to a vaccine.
Pluto may get its smattering of red spots from the fallout of its hazy blue skies, researchers say.
Haze particles from the dwarf planet’s atmosphere settle onto all of Pluto’s surfaces. But some regions may become redder and darker than others because parts of the atmosphere collapse, exposing those spots to more surface-darkening radiation from space, researchers report March 22 at the Lunar and Planetary Science Conference in The Woodlands, Texas.
“The atmospheric haze on Pluto was a spectacular surprise,” says NASA New Horizons mission scientist Andrew Cheng, a physicist at Johns Hopkins University. When the New Horizons spacecraft flew past Pluto in 2015, scientists weren’t expecting to see haze reaching at least 200 kilometers above the dwarf planet’s surface; nor were they expecting to see the haze divided into about 20 delicate and distinct layers (SN Online: 10/15/15). These discoveries led researchers to suspect that the layers formed as a result of weak winds blowing across Pluto’s surface and over its mountains. Cheng and colleagues describe how the winds would shape the haze layers in a paper accepted in Icarus and posted online February 24 at arXiv.org. The team also explains how the atmosphere may affect the color of the dwarf planet’s surface features. “Haze particles continually fall out onto the surface and rapidly build up,” Cheng says. This process should effectively “paint” the entire surface a uniform color — but Pluto isn’t a single color. It has strikingly bright and dark terrains, with some of the highest contrast found in the solar system. These dark and light regions form because portions of Pluto’s atmosphere periodically collapse, with air freezing and falling onto the dwarf planet’s surface, he and colleagues suggest. When a section of the atmosphere collapses, parts of the surface are exposed directly to radiation from space, which would darken the surface particles there, Cheng explains. The richness of the reds, the team says, cannot be explained without some kind of collapse of the atmosphere, which does eventually redevelop.
Observations from NASA’s Kepler spacecraft also support the idea that Pluto’s atmosphere collapses. In fact, as Pluto moves away from the sun, most, if not all, of its atmosphere may collapse onto the dwarf planet’s surface, reported Carey Lisse, also of Johns Hopkins University, at the conference. Exactly how much of Pluto’s atmosphere freezes out during its year, which lasts for 248 Earth years, isn’t clear. But that is currently being monitored, says Timothy Dowling, an atmospheric scientist at the University of Louisville in Kentucky, who was not involved in the new work. Pluto, he notes, won’t complete the first lap that humans have watched it make around the sun until 2178.
Mosquitoes are more than an itchy nuisance. They can carry serious diseases, including Zika, West Nile, yellow fever and chikungunya. Now after testing 11 types of mosquito repellents, researchers say they’ve identified the products most effective at warding off the bloodsuckers.
Spray-on repellents with DEET or a refined tree extract called oil of lemon eucalyptus are most likely to keep you bite-free, the scientists report online February 16 in the Journal of Insect Science. The OFF! Clip-On repellent, which puffs out a vapor of the chemical metofluthrin, killed every mosquito in the cage. But Hansen says the mosquitoes couldn’t escape, so they probably got a higher dose than they would in a natural setting. Other tested repellents such as a citronella candle simply don’t work, says study coauthor Immo Hansen, an insect physiologist at New Mexico State University in Las Cruces.
“There are a whole lot of different products out on the market that are sold as mosquito repellents, and most of them haven’t ever been tested in a scientific setting,” Hansen says.
To evaluate the repellents, the researchers used a person, safely protected from bites, as “bait.” The volunteer sat in a wind tunnel as her alluring scent — and repelling chemicals — were pulled toward a cage of Aedes aegypti mosquitoes. The three-compartment cage allowed the mosquitoes to move toward or away from the volunteer. After 15 minutes, the researchers determined the portion of mosquitoes that had moved into the compartment closest to the volunteer. Three deterrents did little to dissuade the insects: bracelets with geraniol oil, a sound machine that buzzes like a dragonfly and a citronella candle (which appeared to slightly attract the mosquitoes). Burning a candle releases carbon dioxide, which might have drawn the mosquitoes, which home in on a human meal by sensing exhaled CO2 (SN: 3/18/17, p. 10).
Repellents face-off Researchers measured attraction rates of A. aegypti mosquitoes to a person one meter or three meters away who was wearing or seated next to the repellent. Attraction rates are the percentage of total mosquitoes, averaged over four tests, that flew toward the person. These repellents were not significantly different from the no-repellent control: bracelets (Mosquito-NO!, Invisaband, Mosquitavert), Cutter Citro Guard candle and Personal Sonic Mosquito Repeller.
The moon’s origin story does not add up. Most scientists think that the moon formed in the earliest days of the solar system, around 4.5 billion years ago, when a Mars-sized protoplanet called Theia whacked into the young Earth. The collision sent debris from both worlds hurling into orbit, where the rubble eventually mingled and combined to form the moon.
If that happened, scientists expect that Theia’s contribution would give the moon a different composition from Earth’s. Yet studies of lunar rocks show that Earth and its moon are compositionally identical. That fact throws a wrench into the planet-on-planet impact narrative. Researchers have been exploring other scenarios. Maybe the Theia impact never happened (there’s no direct evidence that the budding planet ever existed). Instead of a single colossal collision, scientists have proposed that a string of impacts created miniature moons largely from terrestrial material. Those mini moons merged over time to form one big moon.
“Multiple impacts just make more sense,” says planetary scientist Raluca Rufu of the Weizmann Institute of Science in Rehovot, Israel. “You don’t need this one special impactor to form the moon.”
But Theia shouldn’t be left on the cutting room floor just yet. Earth and Theia were built largely from the same kind of material, new research suggests, and so had similar compositions. There is no sign of “other” material on the moon, this perspective holds, because nothing about Theia was different.
“I’m absolutely on the fence between these two opposing ideas,” says UCLA cosmochemist Edward Young. Determining which story is correct is going to take more research. But the answer will offer profound insights into the evolution of the early solar system, Young says. The moon is an oddball. Most of the solar system’s moons are way out among the gas giant planets. The only other terrestrial planet with orbiting satellites is Mars. Its moons, Phobos and Deimos, are small, and the prevailing explanation says they were probably asteroids captured by the Red Planet’s gravity. Earth’s moon is too big for that scenario. If the moon had come in from elsewhere, asteroid-like, it would probably have crashed into Earth or pulled off into space. An alternate explanation dating from the 1800s suggested that moon-forming material flew off of a fast-spinning young Earth like children tossed from an out-of-control merry-go-round. That idea fell out of favor, though, when scientists calculated that the spin speeds required were impossibly fast. In the mid-1970s, planetary scientists proposed the giant-impact hypothesis and the mysterious planet-sized impactor (named Theia in 2000 for the Greek deity who was mother of the moon goddess Selene). The notion made sense given that the early solar system was like a game of cosmic billiards, with giant space rocks frequently colliding.
A 2001 study of lunar rocks collected during the Apollo missions cast doubt on the giant-impact hypothesis. The research showed that the Earth and moon had surprising similarities. To determine a rock’s origin, scientists measure the relative abundance of oxygen isotopes, which act something like finger-prints at a crime scene. Rocks from Earth and its moon, the scientists found, had seemingly identical mixes of oxygen isotopes. That didn’t make sense if much of the moon’s material came from Theia, not Earth. Using impact simulations, Rufu and colleagues recently estimated that the chance of a Theia collision yielding an Earthlike lunar composition is very slim.
Studies of other elements in Apollo rocks, such as titanium and zirconium, also suggest that the Earth and moon originated from the same material. Young and colleagues recently repeated the oxygen isotope measurements with the latest techniques, hunting for even the slightest difference between Earth and the moon. In January 2016, the team published the results in Science. “We measured the oxygen to the highest precision available,” Young says, “and, gosh, the Earth and moon still look identical.” Some scientists have built simulations of a giant Theia impact that fashion a moon made mostly from terrestrial material. But the scenarios struggle to match the modern positions and movements of the Earth-moon system.
It’s time to think outside the giant-impact box, some scientists argue. Not one but many impacts contributed to the moon’s formation, Rufu and colleagues proposed January 9 in Nature Geoscience. The moon, they say, has an Earthlike composition because most of the material flung into orbit from these impacts came from Earth.
Mini-moon merger The multi-impact hypothesis was first put forward in 1989, though scientists at the time didn’t have the computer power to run the simulations that could support it. Rufu and colleagues recently revisited the proposal with computer simulations of multiple impactors, each about a hundredth to a tenth of Earth’s mass, smacking into the early Earth.
Any impactors that were direct hits would have transferred lots of energy into the Earth, excavating terrestrial material into space. Debris from each impact combined over centuries to form a small moon, the simulations show. As more impacts rocked Earth over tens of millions of years, more moons formed. Gravity pulled the moons together, combining them. Over roughly 100 million years, according to this scenario, around 20 mini moons ultimately merged to form one mighty moon (SN Online: 1/9/17). The multimoon explanation yields the right lunar mix in simulations roughly 20 percent of the time, better than the 1 to 2 percent for the giant-impact hypothesis, the researchers note. “The biggest takeaway is that you cannot explain everything with one shot,” Rufu says.
Planetary scientist Robin Canup finds the scenario convincing. “To me, this appears to be a real contender alongside the one big impactor hypothesis,” says Canup, of the Southwest Research Institute in Boulder, Colo.
Don’t discount Theia But the Theia hypothesis has recently found fresh support. The odds of Theia resembling Earth’s composition enough to yield an Earthlike moon may be a lot higher than originally thought, new chemical analyses suggest. Most of the material that makes up Earth came from the same source as a type of meteorite called enstatite chondrites, planetary scientist Nicolas Dauphas of the University of Chicago reported January 26 in Nature.
Just as with oxygen, the isotopic mix of various other elements in Earth’s rocks serves as a fingerprint of the rocks’ origins. Some of these elements are iron-lovers, such as ruthenium, which quickly sink toward Earth’s iron-rich core (SN: 8/6/16, p. 22). Any ruthenium found close to Earth’s surface, in the mantle, probably arrived late in Earth’s development. Iron-indifferent elements like calcium and titanium don’t sink to the core; they stay in the mantle. Their isotopes record what went into Earth’s assembly over a much longer period of time. By looking at the iron-lovers and iron-indifferent elements together, Dauphas created a timeline of what types of space rocks added to Earth’s mass and when. A mix of different rocks, including some resembling enstatite chondrite meteorites, supplied the first 60 percent of Earth’s mass, Dauphas says. The remaining balance came almost exclusively from the meteorites’ precursors. In total, around three-quarters of Earth’s mass came from the same material as enstatite chondrites, Dauphas estimates. If Theia formed at around the same distance from the sun as Earth, then it primarily formed from the same material, and consequently had a similar isotopic composition. So if the moon formed largely from Theia, it makes sense that lunar rocks would have a similar composition to Earth, too. “Most of the problem is solved, in my opinion, if you admit that the great impactor’s material was no different than that of the [early] Earth,” says cosmochemist Marc Javoy at the Institute of Earth Physics of Paris. “It’s the simplest hypothesis” and would mean that the material gobbled up by budding planets in the inner solar system was fairly uniform in composition, offering insight into the arrangement of material that built the solar system.
The notion that Earth is made from the same material as enstatite chondrites “doesn’t make many people happy,” says geochemist Richard Carlson of the Carnegie Institution for Science in Washington, D.C. The isotopes in Earth’s mantle and the meteorites may match, but the relative abundance of the elements themselves do not, Carlson wrote in a commentary in the Jan. 26 Nature. An additional step in the process is needed to explain this compositional mismatch, he says, such as some of the element silicon getting stashed away in Earth’s core.
“What we have now are a lot of new ideas, and now we need to test them,” says Sarah Stewart, a planetary scientist at the University of California, Davis.
One recently proposed test for the moon’s formation is based on temperature, though it seems to be consistent with both origin stories. A new study comparing the moon’s chemistry with glass forged by a nuclear blast suggests that temperatures during or just after the moon’s inception reached a sizzling 1400° Celsius. That means any plausible moon-forming scenario must involve such high temperatures, researchers reported February 8 in Science Advances. High heat causes rocks to leach light isotopes of zinc. The green-tinged glass forged in the heat of the 1945 Trinity nuclear test in New Mexico lack light isotopes of zinc, says study coauthor and geologist James Day of the Scripps Institution of Oceanography in La Jolla, Calif. The same goes for lunar rocks. Such high temperatures during or just after the moon’s formation fit with the giant-impact hypothesis, he says. But Rufu calculates that her multi-impact hypothesis also yields high enough temperatures. So maybe temperature can’t resolve the debate, but probing the composition of Earth and the moon’s deep interiors could prove the mini-moon explanation right, says Rufu. Without a single giant collision, the interiors of the two worlds may not have been well mixed, she predicts. Dauphas says that measuring the compositions of other planets could lend credence to his Earthlike Theia proposal. Mercury and Venus would also have formed largely from the same kind of material as Earth and therefore also have Earthlike compositions, he says. Future studies of the solar system’s inhabitants could confirm or rule out these predictions, but that will require a new chapter of exploration.
WASHINGTON — A second cancer later in life is common for childhood cancer survivors, and scientists now have a sense of the role genes play when this happens. A project that mined the genetic data of a group of survivors finds that 11.5 percent carry mutations that increase the risk of a subsequent cancer.
“We’ve always known that among survivors, a certain population will experience adverse outcomes directly related to therapy,” says epidemiologist and team member Leslie Robison of St. Jude Children’s Research Hospital in Memphis. The project sought “to find out what contribution genetics may play.” The team presented their work at the American Association of Cancer Research meeting April 3. “This is a nice first step,” says David Malkin, a pediatric oncologist at the University of Toronto. “The results validate the thoughts of those of us who believe there is a genetic risk that increases the risk of second malignancies.”
Five-year survival rates for kids with cancer have grown to more than 80 percent. But “there are long-term consequences for having been diagnosed and treated for cancer as a child,” notes Robison. Some survivors develop a later, second cancer due to the radiation or chemotherapy that treated the first cancer (SN: 3/10/07, p. 157).
The researchers examined 3,007 survivors of pediatric cancer who routinely undergo medical evaluation at St. Jude. About a third had leukemia as children. By age 45, 29 percent of this group had developed new tumors, often in the skin, breast or thyroid.
The team cataloged each survivor’s DNA, and looked closely at 156 genes known as cancer predisposition genes. Of the survivors, 11.5 percent carried a problematic mutation in one of the 156 genes. Some genes on the list convey a higher risk than others, so the team looked further at a subset of 60 genes in which only one mutated copy in each cell is enough to cause disease. These 60 genes also have high penetrance, meaning that a mutated copy is highly likely to lead to a cancer. Nearly 6 percent of the survivors had a problematic mutation in one of these 60 genes.
The research team also separated the survivors based on whether or not they had received radiation therapy as children. Close to 17 percent of survivors not exposed to radiation therapy had a problematic mutation in the subset of 60 genes. These survivors had an increased risk for any second cancer. Those with both a mutation in one of the 60 genes and radiation in their treatment history had a higher risk for specific kinds of second cancers: breast, thyroid or sarcomas, tumors in connective tissues. Based on the new estimates of genetic risk, the team suggests that survivors not given radiation therapy undergo genetic counseling if a second cancer develops. Counseling is also recommended “for survivors who develop a secondary breast cancer, thyroid cancer or sarcoma in a site that received prior radiation therapy,” says St. Jude epidemiologist and project team member Carmen Wilson. Counseling can provide guidance on health practices going forward, reproductive choices and the implications for immediate family members who may have inherited the mutation, notes Robison.
The extensive amount of medical and genomic information collected for the survivors could help with cancer prevention efforts in the future, Robison says. The team would like to create prediction models that consider treatment, genetics and other clinical information, in order to place survivors into different risk groups. “It’s eventually going to have clear implications for how these patients are clinically managed, and how we either prevent or ameliorate the adverse effects,” Robison says.
Malkin notes that not only “what you got for treatment, but when you got it” is another factor influencing a survivor’s risk profile for second cancers, as treatments and doses have changed over time. He also thinks the percentage of survivors at risk reported by Robison’s team is lower than expected. “Expanding the pool of genes to look at will be very informative,” he says.
A new device the size of a coffee mug can generate drinkable water from desert air using nothing but sunlight.
With this kind of device, “you can harvest the equivalent of a Coke can’s worth of water in an hour,” says cocreator Omar Yaghi, a chemist at the University of California, Berkeley. “That’s about how much water a person needs to survive in the desert.”
Though that may not sound like much, its designers say the current device is just a prototype. But the technology could be scaled up to supply fresh water to some of the most parched and remote regions of the globe, such as the Middle East and North Africa, they say. Previous attempts at low-energy water collection struggled to function below 50 percent relative humidity (roughly the average afternoon humidity of Augusta, Ga.). Thanks to a special material, the new device pulled water from air with as low as 20 percent relative humidity, Yaghi and colleagues report online April 13 in Science. That’s like conjuring water in Las Vegas, where the average afternoon relative humidity is 21 percent.
Drinking water supplies can’t keep up with the rising demands of a growing human population, and shifts in rainfall caused by climate change are expected to exacerbate the problem. Already, two-thirds of the world’s population is experiencing water shortages (SN: 8/20/16, p. 22). One largely untapped water source is the atmosphere, which contains more than 5 billion Olympic-sized pools’ worth of moisture in the form of vapor and droplets.
Getting that moisture out is easy when the air is saturated with water. But humid regions aren’t where the water-shortage problem is, and drawing water from the drier air in parched areas is a greater challenge. Spongy materials such as silica gels can extract moisture from the air even at low relative humidity. Those materials, however, either amass water too slowly or require lots of energy to extract the collected water from the material.
The new device uses a material that avoids both problems. MIT mechanical engineer Evelyn Wang, Yaghi and colleagues repurposed an existing material composed of electrically charged metal atoms linked by organic molecules. This metal-organic framework, christened MOF-801, creates a network of microscopic, spongelike pores that can trap such gases as water vapor. At room temperature, water vapor collects in the pores. As temperatures rise, the water escapes.
The team’s prototype includes a layer of MOF-801 mixed with copper foam. Left in the shade, this layer collects water vapor from the air. When moved into direct sunlight, the layer heats up and the water vapor escapes into an underlying chamber. A condenser in the chamber cools the vapor, converting it into a potable liquid. This entire process takes around two hours. Laboratory tests of the device harvested 2.8 liters of water per day for every kilogram of MOF-801 used. As it is now, the device could be used as a personal water source in dry regions without water-producing infrastructure, Yaghi says, or the system could be scaled up to produce enough water for a whole community.
The device’s ability to produce water at low relative humidity is a breakthrough, says Krista Walton, a chemical engineer at Georgia Tech in Atlanta. “No one else is using MOFs like this today,” she says.
As for the cost of scaling up, the ingredients used in the device’s metal-organic framework “aren’t exotic,” Walton says. Producing large amounts of the material “would definitely be possible if the demand were there.”
A recent upsurge in planet-warming methane may not be caused by increasing emissions, as previously thought, but by methane lingering longer in the atmosphere.
That’s the conclusion of two independent studies that indirectly tracked concentrations of hydroxyl, a highly reactive chemical that rips methane molecules apart. Hydroxyl levels in the atmosphere decreased roughly 7 or 8 percent starting in the early 2000s, the studies estimate.
The two teams propose that the hydroxyl decline slowed the breakdown of atmospheric methane, boosting levels of the greenhouse gas. Concentrations in the atmosphere have crept up since 2007, but during the same period, methane emissions from human activities and natural sources have remained stable or even fallen slightly, both studies suggest. The research groups report their findings online April 17 in Proceedings of the National Academy of Sciences. “If hydroxyl were to decline long-term, then it would be bad news,” says Matt Rigby, an atmospheric scientist at the University of Bristol in England who coauthored one of the studies. Less methane would be removed from the atmosphere, he says, so the gas would hang around longer and cause more warming.
The stability of methane emissions might also vindicate previous studies that found no rise in emissions. The Environmental Protection Agency, for instance, has reported that U.S. emissions remained largely unchanged from 2004 to 2014 (SN Online: 4/14/16).
Methane enters the atmosphere from a range of sources, from decomposing biological material in wetlands to leaks in natural gas pipelines. Ton for ton, that methane causes 28 to 36 times as much warming as carbon dioxide over a century.
Since the start of the Industrial Revolution, atmospheric methane concentrations have more than doubled. By the early 2000s, though, levels of the greenhouse gas inexplicably flatlined. In 2007, methane levels just as mysteriously began rising again. The lull and subsequent upswing puzzled scientists, with explanations ranging from the abundance of methane-producing microbes to the collapse of the Soviet Union.
Those proposals didn’t account for what happens once methane enters the atmosphere. Most methane molecules in the air last around a decade before being broken apart during chemical reactions with hydroxyl. Monitoring methane-destroying hydroxyl is tricky, though, because the molecules are so reactive that they survive for less than a second after formation before undergoing a chemical reaction. Neither study can show conclusively that hydroxyl levels changed, notes Stefan Schwietzke, an atmospheric scientist at the National Oceanic and Atmospheric Administration’s Earth System Research Laboratory in Boulder, Colo. The papers nevertheless add a new twist in explaining the mysterious methane rise, he says. “Basically these studies are opening a new can of worms, and there was no shortage of worms.”
Despite being conducted by two separate teams — one headed by Rigby and the other by atmospheric scientist Alex Turner of Harvard University — the new studies used the same roundabout approach to tracking hydroxyl concentrations over time.
Both teams followed methyl chloroform, an ozone-depleting substance used as a solvent before being banned by the Montreal Protocol. Like methane, methyl chloroform also breaks apart in reactions with hydroxyl. Unlike methane, though, emission rates of methyl chloroform are fairly easy to track because the chemical is entirely human-made.
Examining methyl chloroform measurements gathered since the 1980s revealed that hydroxyl concentrations have probably wobbled over time, contributing to the odd pause and rise in atmospheric methane concentrations. But to know for sure whether hydroxyl levels varied or remained steady, scientists will need to take a more detailed look at regional emissions of methane and methyl chloroform, Rigby says.
Why hydroxyl levels might have fallen also remains unclear. Turner and colleagues note that the ban on ozone-depleting substances like methyl chloroform might be the cause. The now-recovering ozone layer (SN: 12/24/16, p. 28) blocks some ultraviolet light, an important ingredient in the formation of hydroxyl. Identifying the cause of the hydroxyl changes could help climate scientists better predict how methane levels will behave in the future.
NEW ORLEANS — A relatively small brain can pack a big evolutionary punch. Consider Homo naledi, a famously puzzling fossil species in the human genus. Despite having a brain only slightly larger than a chimpanzee’s, H. naledi displays key humanlike neural features, two anthropologists reported April 20 at the annual meeting of the American Association of Physical Anthropologists.
Those brain characteristics include a region corresponding to Broca’s area, which spans parts of the right and left sides of the brain in present-day people. The left side is typically involved in speech and language. “It looks like Homo naledi’s brain evolved a huge amount of shape change that supported social emotions and advanced communication of some type,” said Shawn Hurst of Indiana University Bloomington, who presented the new findings. “We can’t say for sure whether that included language.” Frontal brain locations near Broca’s area contribute to social emotions such as empathy, pride and shame. As interactions within groups became more complex in ancient Homo species, neural capacities for experiencing social emotions and communicating verbally blossomed, Hurst suspects.
Scientists don’t know how long ago H. naledi inhabited Africa’s southern tip. If H. naledi lived 2 million or even 900,000 years ago, as some researchers have suggested (SN: 8/6/16, p. 12), humanlike brains with a language-related area would be shocking. A capacity for language is thought to have emerged in Homo over the last few hundred thousand years at most.
Discoverers of H. naledi, led by anthropologist Lee Berger of the University of the Witwatersrand in Johannesburg, will announce an estimated age for the species and describe new fossil finds within the next few weeks, Hurst said.
Hurst and Ralph Holloway of Columbia University led a team that laser scanned the inside surfaces of several partial H. naledi skulls to create virtual casts, or endocasts, of brain surfaces. An endocast reproduces the shape and, with varying success, details of the surface of the brain that were imprinted on the walls of the braincase while an individual was alive. Such brain impressions are not always clear, which has sparked debate over how to interpret them.
Two grooves identified on an endocast from a partial H. naledi skull frame the language-related section of Broca’s area in humans today, Hurst said. H. naledi’s brain also possessed folds of tissue that largely covered a surface section where the grooves converged. Similar folds of tissue typically cover the surface of Broca’s area in modern human brains. The general shape of that part of the frontal brain in humans differs greatly from that of living apes and fossil hominids dating to at least 700,000 to 1 million years years ago, Hurst added.
H. naledi also displays a humanlike pattern of surface features at the back of the brain, although to a lesser extent than at the brain’s front, Holloway said. Endocasts for this analysis came from two other partial H. naledi skulls.
Specific protrusions and other features at the back of H. naledi’s brain are more pronounced on the left side, Holloway said. In people today, the same left-sided bias in brain organization is associated with right-handedness.
In the past, Holloway and anthropologist Dean Falk of Florida State University in Tallahassee have sharply disagreed over how to identify neural features on fossil endocasts, including a key groove in tissue at the back of the brain. After hearing Hurst and Holloway’s presentations, Falk expressed doubt that H. naledi’s brain was as humanlike as they concluded.
Shortly after the presentations, Hurst and Falk hashed out their differences head-to-head as they jointly studied a solid cast of the partial H. naledi brain surface displaying proposed signs of Broca’s area. They agreed on much about the fossil species’ neural setup, with one major exception. “I’m skeptical that two frontal [grooves] frame an area that corresponds to Broca’s area,” Falk said. If she’s right, then H. naledi communicated much less like present-day people than proposed by Hurst. Falk plans to study the new endocasts more closely and compare them with endocasts of other fossil hominids.